Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.621
1.
Drug Des Devel Ther ; 18: 1349-1368, 2024.
Article En | MEDLINE | ID: mdl-38681208

Background: Sepsis is recognized as a multiorgan and systemic damage caused by dysregulated host response to infection. Its acute systemic inflammatory response highly resembles that of lipopolysaccharide (LPS)-induced endotoxemia. Propofol and dexmedetomidine are two commonly used sedatives for mechanical ventilation in critically ill patients and have been reported to alleviate cognitive impairment in many diseases. In this study, we aimed to explore and compare the effects of propofol and dexmedetomidine on the encephalopathy induced by endotoxemia and to investigate whether ferroptosis is involved, finally providing experimental evidence for multi-drug combination in septic sedation. Methods: A total of 218 C57BL/6J male mice (20-25 g, 6-8 weeks) were used. Morris water maze (MWM) tests were performed to evaluate whether propofol and dexmedetomidine attenuated LPS-induced cognitive deficits. Brain injury was evaluated using Nissl and Fluoro-Jade C (FJC) staining. Neuroinflammation was assessed by dihydroethidium (DHE) and DCFH-DA staining and by measuring the levels of three cytokines. The number of Iba1+ and GFAP+ cells was used to detect the activation of microglia and astrocytes. To explore the involvement of ferroptosis, the levels of ptgs2 and chac1; the content of iron, malondialdehyde (MDA), and glutathione (GSH); and the expression of ferroptosis-related proteins were investigated. Conclusion: The single use of propofol and dexmedetomidine mitigated LPS-induced cognitive impairment, while the combination showed poor performance. In alleviating endotoxemic neural loss and degeneration, the united sedative group exhibited the most potent capability. Both propofol and dexmedetomidine inhibited neuroinflammation, while propofol's effect was slightly weaker. All sedative groups reduced the neural apoptosis, inhibited the activation of microglia and astrocytes, and relieved neurologic ferroptosis. The combined group was most prominent in combating genetic and biochemical alterations of ferroptosis. Fpn1 may be at the core of endotoxemia-related ferroptosis activation.


Dexmedetomidine , Endotoxemia , Ferroptosis , Lipopolysaccharides , Mice, Inbred C57BL , Propofol , Dexmedetomidine/pharmacology , Animals , Propofol/pharmacology , Ferroptosis/drug effects , Mice , Male , Endotoxemia/drug therapy , Endotoxemia/metabolism , Endotoxemia/chemically induced , Lipopolysaccharides/pharmacology , Dose-Response Relationship, Drug , Brain Diseases/drug therapy , Brain Diseases/metabolism , Brain Diseases/pathology , Hypnotics and Sedatives/pharmacology
2.
Cell Calcium ; 120: 102882, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631162

Strict homeostatic control of pH in both intra- and extracellular compartments of the brain is fundamentally important, primarily due to the profound impact of free protons ([H+]) on neuronal activity and overall brain function. Astrocytes, crucial players in the homeostasis of various ions in the brain, actively regulate their intracellular [H+] (pHi) through multiple membrane transporters and carbonic anhydrases. The activation of astroglial pHi regulating mechanisms also leads to corresponding alterations in the acid-base status of the extracellular fluid. Notably, astrocyte pH regulators are modulated by various neuronal signals, suggesting their pivotal role in regulating brain acid-base balance in both health and disease. This review presents the mechanisms involved in pH regulation in astrocytes and discusses their potential impact on extracellular pH under physiological conditions and in brain disorders. Targeting astrocytic pH regulatory mechanisms represents a promising therapeutic approach for modulating brain acid-base balance in diseases, offering a potential critical contribution to neuroprotection.


Astrocytes , Brain , Astrocytes/metabolism , Humans , Hydrogen-Ion Concentration , Animals , Brain/metabolism , Brain Diseases/metabolism , Brain Diseases/pathology , Homeostasis
3.
Cereb Cortex ; 34(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38566507

Crohn's disease is an acknowledged "brain-gut" disorder with unclear physiopathology. This study aims to identify potential neuroimaging biomarkers of Crohn's disease. Gray matter volume, cortical thickness, amplitude of low-frequency fluctuations, and regional homogeneity were selected as indices of interest and subjected to analyses using both activation likelihood estimation and seed-based d mapping with permutation of subject images. In comparison to healthy controls, Crohn's disease patients in remission exhibited decreased gray matter volume in the medial frontal gyrus and concurrently increased regional homogeneity. Furthermore, gray matter volume reduction in the medial superior frontal gyrus and anterior cingulate/paracingulate gyri, decreased regional homogeneity in the median cingulate/paracingulate gyri, superior frontal gyrus, paracentral lobule, and insula were observed. The gray matter changes of medial frontal gyrus were confirmed through both methods: decreased gray matter volume of medial frontal gyrus and medial superior frontal gyrus were identified by activation likelihood estimation and seed-based d mapping with permutation of subject images, respectively. The meta-regression analyses showed a positive correlation between regional homogeneity alterations and patient age in the supplementary motor area and a negative correlation between gray matter volume changes and patients' anxiety scores in the medial superior frontal gyrus. These anomalies may be associated with clinical manifestations including abdominal pain, psychiatric disorders, and possibly reflective of compensatory mechanisms.


Brain Diseases , Crohn Disease , Motor Cortex , Humans , Crohn Disease/complications , Crohn Disease/diagnostic imaging , Crohn Disease/pathology , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Gray Matter/pathology , Brain Diseases/pathology
4.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38673819

Perineuronal nets (PNN) are a special highly structured type of extracellular matrix encapsulating synapses on large populations of CNS neurons. PNN undergo structural changes in schizophrenia, epilepsy, Alzheimer's disease, stroke, post-traumatic conditions, and some other brain disorders. The functional role of the PNN microstructure in brain pathologies has remained largely unstudied until recently. Here, we review recent research implicating PNN microstructural changes in schizophrenia and other disorders. We further concentrate on high-resolution studies of the PNN mesh units surrounding synaptic boutons to elucidate fine structural details behind the mutual functional regulation between the ECM and the synaptic terminal. We also review some updates regarding PNN as a potential pharmacological target. Artificial intelligence (AI)-based methods are now arriving as a new tool that may have the potential to grasp the brain's complexity through a wide range of organization levels-from synaptic molecular events to large scale tissue rearrangements and the whole-brain connectome function. This scope matches exactly the complex role of PNN in brain physiology and pathology processes, and the first AI-assisted PNN microscopy studies have been reported. To that end, we report here on a machine learning-assisted tool for PNN mesh contour tracing.


Artificial Intelligence , Brain , Extracellular Matrix , Humans , Brain/pathology , Brain/diagnostic imaging , Extracellular Matrix/metabolism , Animals , Microscopy/methods , Nerve Net/pathology , Synapses/pathology , Brain Diseases/pathology , Neurons/pathology , Neurons/metabolism
6.
Front Immunol ; 15: 1305087, 2024.
Article En | MEDLINE | ID: mdl-38665919

Microglia are the brain's resident macrophages that play pivotal roles in immune surveillance and maintaining homeostasis of the Central Nervous System (CNS). Microglia are functionally implicated in various cerebrovascular diseases, including stroke, aneurysm, and tumorigenesis as they regulate neuroinflammatory responses and tissue repair processes. Here, we review the manifold functions of microglia in the brain under physiological and pathological conditions, primarily focusing on the implication of microglia in glioma propagation and progression. We further review the current status of therapies targeting microglial cells, including their re-education, depletion, and re-population approaches as therapeutic options to improve patient outcomes for various neurological and neuroinflammatory disorders, including cancer.


Brain , Microglia , Humans , Microglia/immunology , Brain/immunology , Brain/pathology , Animals , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/pathology , Brain Diseases/immunology , Brain Diseases/pathology , Glioma/immunology , Glioma/pathology , Glioma/therapy
7.
Acta Neuropathol ; 147(1): 77, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38687393

Influenza-associated encephalopathy (IAE) is extremely acute in onset, with high lethality and morbidity within a few days, while the direct pathogenesis by influenza virus in this acute phase in the brain is largely unknown. Here we show that influenza virus enters into the cerebral endothelium and thereby induces IAE. Three-weeks-old young mice were inoculated with influenza A virus (IAV). Physical and neurological scores were recorded and temporal-spatial analyses of histopathology and viral studies were performed up to 72 h post inoculation. Histopathological examinations were also performed using IAE human autopsy brains. Viral infection, proliferation and pathogenesis were analyzed in cell lines of endothelium and astrocyte. The effects of anti-influenza viral drugs were tested in the cell lines and animal models. Upon intravenous inoculation of IAV in mice, the mice developed encephalopathy with brain edema and pathological lesions represented by micro bleeding and injured astrocytic process (clasmatodendrosis) within 72 h. Histologically, massive deposits of viral nucleoprotein were observed as early as 24 h post infection in the brain endothelial cells of mouse models and the IAE patients. IAV inoculated endothelial cell lines showed deposition of viral proteins and provoked cell death, while IAV scarcely amplified. Inhibition of viral transcription and translation suppressed the endothelial cell death and the lethality of mouse models. These data suggest that the onset of encephalopathy should be induced by cerebral endothelial infection with IAV. Thus, IAV entry into the endothelium, and transcription and/or translation of viral RNA, but not viral proliferation, should be the key pathogenesis of IAE.


Brain , Orthomyxoviridae Infections , Animals , Humans , Mice , Brain/pathology , Brain/virology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/complications , Virus Internalization , Influenza A virus/pathogenicity , Endothelial Cells/virology , Endothelial Cells/pathology , Influenza, Human/pathology , Influenza, Human/complications , Brain Diseases/virology , Brain Diseases/pathology , Male , Disease Models, Animal , Female , Endothelium/pathology , Endothelium/virology , Mice, Inbred C57BL
8.
AJNR Am J Neuroradiol ; 45(4): 379-385, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38453413

BACKGROUND AND PURPOSE: The use of MR imaging in emergency settings has been limited by availability, long scan times, and sensitivity to motion. This study assessed the diagnostic performance of an ultrafast brain MR imaging protocol for evaluation of acute intracranial pathology in the emergency department and inpatient settings. MATERIALS AND METHODS: Sixty-six adult patients who underwent brain MR imaging in the emergency department and inpatient settings were included in the study. All patients underwent both the reference and the ultrafast brain MR protocols. Both brain MR imaging protocols consisted of T1-weighted, T2/T2*-weighted, FLAIR, and DWI sequences. The ultrafast MR images were reconstructed by using a machine-learning assisted framework. All images were reviewed by 2 blinded neuroradiologists. RESULTS: The average acquisition time was 2.1 minutes for the ultrafast brain MR protocol and 10 minutes for the reference brain MR protocol. There was 98.5% agreement on the main clinical diagnosis between the 2 protocols. In head-to-head comparison, the reference protocol was preferred in terms of image noise and geometric distortion (P < .05 for both). The ultrafast ms-EPI protocol was preferred over the reference protocol in terms of reduced motion artifacts (P < .01). Overall diagnostic quality was not significantly different between the 2 protocols (P > .05). CONCLUSIONS: The ultrafast brain MR imaging protocol provides high accuracy for evaluating acute pathology while only requiring a fraction of the scan time. Although there was greater image noise and geometric distortion on the ultrafast brain MR protocol images, there was significant reduction in motion artifacts with similar overall diagnostic quality between the 2 protocols.


Brain Diseases , Inpatients , Adult , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Brain Diseases/diagnostic imaging , Brain Diseases/pathology , Time
9.
Neurobiol Dis ; 194: 106470, 2024 May.
Article En | MEDLINE | ID: mdl-38485094

Pathogenic variants in KCNB1 are associated with a neurodevelopmental disorder spectrum that includes global developmental delays, cognitive impairment, abnormal electroencephalogram (EEG) patterns, and epilepsy with variable age of onset and severity. Additionally, there are prominent behavioral disturbances, including hyperactivity, aggression, and features of autism spectrum disorder. The most frequently identified recurrent variant is KCNB1-p.R306C, a missense variant located within the S4 voltage-sensing transmembrane domain. Individuals with the R306C variant exhibit mild to severe developmental delays, behavioral disorders, and a diverse spectrum of seizures. Previous in vitro characterization of R306C described altered sensitivity and cooperativity of the voltage sensor and impaired capacity for repetitive firing of neurons. Existing Kcnb1 mouse models include dominant negative missense variants, as well as knockout and frameshifts alleles. While all models recapitulate key features of KCNB1 encephalopathy, mice with dominant negative alleles were more severely affected. In contrast to existing loss-of-function and dominant-negative variants, KCNB1-p.R306C does not affect channel expression, but rather affects voltage-sensing. Thus, modeling R306C in mice provides a novel opportunity to explore impacts of a voltage-sensing mutation in Kcnb1. Using CRISPR/Cas9 genome editing, we generated the Kcnb1R306C mouse model and characterized the molecular and phenotypic effects. Consistent with the in vitro studies, neurons from Kcnb1R306C mice showed altered excitability. Heterozygous and homozygous R306C mice exhibited hyperactivity, altered susceptibility to chemoconvulsant-induced seizures, and frequent, long runs of slow spike wave discharges on EEG, reminiscent of the slow spike and wave activity characteristic of Lennox Gastaut syndrome. This novel model of channel dysfunction in Kcnb1 provides an additional, valuable tool to study KCNB1 encephalopathies. Furthermore, this allelic series of Kcnb1 mouse models will provide a unique platform to evaluate targeted therapies.


Autism Spectrum Disorder , Brain Diseases , Epilepsy , Animals , Mice , Autism Spectrum Disorder/pathology , Brain Diseases/pathology , Epilepsy/pathology , Mutation , Phenotype , Seizures
10.
Brain Connect ; 14(2): 122-129, 2024 Mar.
Article En | MEDLINE | ID: mdl-38308482

Background: Balance between brain structure and function is implicated in aging and many brain disorders. This study aimed to investigate the coupling between brain structure and function using 18F-fludeoxyglucose positron emission tomography (PET)/magnetic resonance imaging (MRI). Methods: One hundred thirty-eight subjects who underwent brain 18F-FDG PET/MRI were recruited. The structural and functional coupling at the regional level was explored by calculating within-subject Spearman's correlation between glucose metabolism (GluM) and cortical thickness (CTh) across the cortex for each subject, which was then correlated with age to explore its physiological effects. Then, subjects were divided into groups of middle-aged and young adults and older adults (OAs); structural connectivity (SC) based on CTh and functional connectivity (FC) based on GluM were constructed for the two groups, respectively, followed by exploring the connective-level structural and functional coupling on SC and FC matrices. The global and local efficiency values of the brain SC and FC were also evaluated. Results: Of the subjects, 97.83% exhibited a significant negative correlation between regional CTh and GluM (r = -0.24 to -0.71, p < 0.05, FDR correction), and this CTh-GluM correlation was negatively correlated with age (R = -0.35, p < 0.001). For connectivity matrices, many regions showed positive correlation between SC and FC, especially in the OA group. Besides, FC exhibited denser connections than SC, resulting in both higher global and local efficiency, but lower global efficiency when the network size was corrected. Conclusions: This study found couplings between CTh and GluM at both regional and connective levels, which reflected the aging progress, and might provide new insight into brain disorders. Impact statement The intricate interplay between brain structures and functions plays a pivotal role in unraveling the complexities inherent in the aging process and the pathogenesis of neurological disorders. This study revealed that 97.83% subjects showed negative correlation between the brain's regional cortical thickness and glucose metabolism, while at the connective level, many regions showed positive correlations between structural and functional connectivity. The observed coupling at the regional and connective levels reflected physiological progress, such as aging, and provides insights into the brain mechanisms and potential implications for the diagnosis and treatment of brain disorders.


Brain Diseases , Magnetic Resonance Imaging , Middle Aged , Young Adult , Humans , Aged , Brain/pathology , Brain Cortical Thickness , Brain Diseases/pathology , Glucose/metabolism , Positron-Emission Tomography
11.
Sci Rep ; 14(1): 4610, 2024 02 26.
Article En | MEDLINE | ID: mdl-38409245

Acute carbon monoxide (CO) poisoning is a prevalent type of poisoning that causes significant harm globally. Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is a severe complication that occurs after acute CO poisoning; however, the exact underlying pathological cause of DEACMP remains unclear. Accumulating evidence indicates that abnormal inflammation and immune-mediated brain damage, cellular apoptosis and autophagy, and direct neuronal toxicity are involved in the development of delayed neurologic sequelae. Sodium butyrate, a histone deacetylase inhibitor, has gained increasing attention for its numerous beneficial effects on various diseases, such as obesity, diabetes, inflammatory diseases, and cerebral damage. In this study, an acute carbon monoxide poisoning (ACOP) model is established in rats to investigate the mechanism of CO poisoning and the therapeutic potential of sodium butyrate. The results suggested that the ACOP rats had impaired spatial memory, and cell apoptosis was observed in the hippocampi with activated autophagy. Sodium butyrate treatment further increased the activation of autophagy in the hippocampi of CO-exposed rats, inhibited apoptosis, and consolidated spatial memory. These findings indicated that sodium butyrate may improve memory and cognitive function in ACMP rats by promoting autophagy and inhibiting apoptosis.


Brain Diseases , Brain Injuries , Carbon Monoxide Poisoning , Neuroprotective Agents , Rats , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Carbon Monoxide Poisoning/drug therapy , Carbon Monoxide Poisoning/complications , Brain Diseases/pathology , Butyric Acid/pharmacology , Butyric Acid/therapeutic use , Signal Transduction , Brain Injuries/complications , TOR Serine-Threonine Kinases/metabolism , Autophagy
12.
Neuroreport ; 35(4): 242-249, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38305125

Research has shown that neuronal ferroptosis is associated with various central nervous system diseases, including Parkinson's disease, acute brain injury, and spinal cord injury. Inhibiting neuronal ferroptosis can greatly alleviate the progression of these diseases. However, there is currently a lack of effective drugs to inhibit neuronal ferroptosis. In this study, we pretreated neuronal cells with Hispolon and subsequently induced a neuronal ferroptosis model using Erastin. We further assessed the changes in the protein expression levels of SLC7A11, GPX4, ACSL4, Nrf-2, and HO-1 using Western blot and immunofluorescence techniques. Additionally, we measured the intracellular levels of Fe2+, GSH, and MDA using relevant assay kits. The research findings revealed that after Hispolon treatment, the expression of the pro-ferroptosis protein ACSL4 decreased, while the expression of the ferroptosis-regulating proteins GPX4 and SLC7A11 increased. Moreover, the use of an Nrf-2-specific inhibitor was able to reverse the effects of Hispolon as mentioned above. In this study, we discovered that Hispolon can promote the expression of Nrf-2 and inhibit the occurrence of neuronal ferroptosis induced by Erastin.


Brain Injuries , Ferroptosis , Neurons , Humans , Blotting, Western , Catechols , Ferroptosis/drug effects , Neurons/drug effects , Neurons/pathology , Brain Diseases/drug therapy , Brain Diseases/pathology
13.
Pediatr Radiol ; 54(2): 337-346, 2024 02.
Article En | MEDLINE | ID: mdl-38182852

BACKGROUND: White matter change is a well-known abnormality in congenital cytomegalovirus (cCMV) infection, but grading remains challenging and clinical relevance unclear. OBJECTIVE: To investigate if quantitative measurement of white matter apparent diffusion coefficient (ADC) values in magnetic resonance imaging (MRI) of the neonatal brain can predict outcome in cCMV. MATERIALS AND METHODS: A retrospective, single-center observational study, including patients with cCMV who had a neonatal brain MRI with diffusion-weighted imaging, was performed between 2007 and 2020. Regions of interest were systematically placed in the white matter on the ADC maps. Two pediatric radiologists independently scored additional brain abnormalities. Outcome measures were neonatal hearing and cognitive and motor development. Statistical analysis included simple and penalized elastic net regression. RESULTS: Neonatal brain MRI was evaluated in 255 patients (median age 21 days, 25-75 percentiles: 14-28 days, 121 male). Gyral abnormalities were noted in nine patients (3.5%), ventriculomegaly in 24 (9.4%), and subependymal cysts in 58 (22.7%). General white matter ADC was significantly higher in patients with neonatal hearing loss and cognitive and motor impairment (P< 0.05). For neonatal hearing loss, simple logistic regression using only general white matter was the best prediction model, with a receiver operating characteristic area under the curve (AUC)=0.76. For cognitive impairment, interacting elastic net regression, including other brain abnormalities and frontoparietal white matter ADC, performed best, with AUC=0.89. For motor impairment, interacting elastic net regression, including other brain abnormalities and deep anterior frontal white matter performed best, with AUC=0.73. CONCLUSION: Neonatal white matter ADC was significantly higher in patients with clinical impairments. Quantitative ADC measurement may be a useful tool for predicting clinical outcome in cCMV.


Brain Diseases , Cytomegalovirus Infections , Hearing Loss , White Matter , Infant, Newborn , Child , Humans , Male , White Matter/diagnostic imaging , Retrospective Studies , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Cytomegalovirus Infections/diagnostic imaging , Cytomegalovirus Infections/congenital , Brain Diseases/pathology , Hearing Loss/pathology
14.
Brain Res Bull ; 207: 110883, 2024 Feb.
Article En | MEDLINE | ID: mdl-38244807

The link between drug-induced dysbiosis and its influence on brain diseases through gut-residing bacteria and their metabolites, named the microbiota-gut-brain axis (MGBA), remains largely unexplored. This review investigates the effects of commonly prescribed drugs (metformin, statins, proton-pump-inhibitors, NSAIDs, and anti-depressants) on the gut microbiota, comparing the findings with altered bacterial populations in major brain diseases (depression, multiple sclerosis, Parkinson's and Alzheimer's). The report aims to explore whether drugs can influence the development and progression of brain diseases via the MGBA. Central findings indicate that all explored drugs induce dysbiosis. These dysbiosis patterns were associated with brain disorders. The influence on brain diseases varied across different bacterial taxa, possibly mediated by direct effects or through bacterial metabolites. Each drug induced both positive and negative changes in the abundance of bacteria, indicating a counterbalancing effect. Moreover, the above-mentioned drugs exhibited similar effects, suggesting that they may counteract or enhance each other's effects on brain diseases when taken together by comorbid patients. In conclusion, the interplay of bacterial species and their abundances may have a greater impact on brain diseases than individual drugs or bacterial strains. Future research is needed to better understand drug-induced dysbiosis and the implications for brain disease pathogenesis, with the potential to develop more effective therapeutic options for patients with brain-related diseases.


Brain Diseases , Gastrointestinal Microbiome , Mitoguazone/analogs & derivatives , Humans , Brain-Gut Axis , Dysbiosis/chemically induced , Dysbiosis/drug therapy , Dysbiosis/metabolism , Brain Diseases/pathology , Brain/metabolism
15.
Neurol Sci ; 45(2): 515-523, 2024 Feb.
Article En | MEDLINE | ID: mdl-37768475

OBJECTIVE: Multiple ring-enhancing lesions of the brain are enigmatic neuroimaging abnormality. In this systematic review, we evaluated the etiological spectrum of these lesions. METHODS: This systematic review adhered to the PRISMA guidelines. We searched PubMed, Embase, Scopus, and Google Scholar up until 15 June 2023. We included case reports and case series. Quality evaluation of each case was based on selection, ascertainment, causality, and reporting. The extracted information included demographic characteristics, clinical features, type and number of multiple enhancing brain lesions, diagnostic procedures, final diagnoses, treatments, and patient outcomes. PROTOCOL REGISTRATION: PROSPERO CRD42023437081. RESULTS: We analyzed 156 records representing 161 patients, 60 of whom were immunocompromised. The mean age was 42.6 years, and 67% of patients experienced symptoms for up to 1 month. A higher proportion of immunocompromised patients (42% vs. 30%) exhibited encephalopathy. Chest or CT thorax abnormalities were reported in 27.3% of patients, while CSF abnormalities were found in 31.7%, more frequently among the immunocompromised. Definitive diagnoses were established via brain biopsy, aspiration, or autopsy in 60% of cases, and through CSF examination or other ancillary tests in 40% of cases. Immunocompromised patients had a higher incidence of Toxoplasma gondii infection and CNS lymphoma, while immunocompetent patients had a higher incidence of Mycobacterium tuberculosis infection and immune-mediated and demyelinating disorders. The improvement rate was 74% in immunocompetent patients compared to 52% in the immunocompromised group. CONCLUSION: Multiple ring-enhancing lesions of the brain in immunocompromised patients are more frequently caused by Toxoplasma gondii infections and CNS lymphoma. Conversely, among immunocompetent patients, Mycobacterium tuberculosis infection and immune-related demyelinating conditions are common.


Brain Diseases , Lymphoma , Tuberculosis , Humans , Adult , Brain/diagnostic imaging , Brain/pathology , Brain Diseases/diagnostic imaging , Brain Diseases/etiology , Brain Diseases/pathology , Tuberculosis/pathology
16.
Brain Imaging Behav ; 18(1): 44-56, 2024 Feb.
Article En | MEDLINE | ID: mdl-37857914

Delineating the neuropathological characteristics of primary open-angle glaucoma (POAG) is critical for understanding its pathophysiology. While temporal stability represents a crucial aspect of the brain's functional architecture, the specific patterns underlying its contribution to POAG remain unclear. This study aims to analyze the brain functional abnormalities in POAG using functional stability, a dynamic functional connectivity (DFC) approach based on resting-state functional magnetic resonance imaging (rs-fMRI). Seventy patients with POAG and forty-five healthy controls underwent rs-fMRI and ophthalmological examinations. The stability of DFC was calculated as the concordance of DFC over time using a sliding-window approach, and the differences in stability between the two groups were compared. Subsequently, Spearman's correlation analyses were conducted to examine the relationship between functional stability and clinical indicators. Compared with healthy controls, patients with POAG exhibited significantly decreased functional stability in the visual network, including the early visual center, ventral and dorsal stream visual cortex in both hemispheres. Conversely, stability values increased in the bilateral inferior parietal gyrus and right inferior frontal cortex. In POAG patients, the dynamic stability of the left early visual cortex and ventral stream visual cortex correlated with the mean deviation of visual field defects (r = 0.251, p = 0.037). The evidence from this study suggests that functional stability may provide a new understanding of brain alterations in the progression of POAG.


Brain Diseases , Glaucoma, Open-Angle , Humans , Magnetic Resonance Imaging/methods , Glaucoma, Open-Angle/diagnostic imaging , Brain , Brain Mapping , Brain Diseases/pathology
17.
J Vet Intern Med ; 38(1): 277-284, 2024.
Article En | MEDLINE | ID: mdl-38041431

BACKGROUND: Polioencephalopathies secondary to inborn errors of metabolism have been described in dogs, but few genetically characterized. OBJECTIVES: Clinically and genetically characterize polioencephalopathy in a family of Eurasier dogs. ANIMALS: Three Eurasier dogs (littermates) presented with early onset movement disorders (9 weeks in 2, 4-6 months in 1). Progressive gait abnormalities were detected in 2 of the dogs, persistent divergent strabismus in 1, whereas consciousness and behavior remained intact in all dogs. One dog was euthanized at 25 months. METHODS: Video footage was assessed in all dogs, and Dogs 1 and 2 had examinations and investigations performed. Whole genome sequencing of Dog 1 and further genetic analyses in the family were performed. A cohort of 115 Eurasier controls was genotyped for specific variants. RESULTS: Episodes were characterized by generalized ataxia, as well as a hypermetric thoracic limb gait, dystonia, and irregular flexion and extension movements of the thoracic limbs. Magnetic resonance imaging of the brain in Dogs 1 and 2 identified symmetrical, bilateral T2 and fluid attenuated inversion recovery hyperintense, T1 hypo to isointense, nonenhancing lesions of the caudate nucleus, lateral and medial geniculate nuclei, thalamus, hippocampus, rostral colliculus and mild generalized brain atrophy. Genetic analyses identified a homozygous mitochondrial trans-2-enoyl-CoA reductase (MECR) missense variant in all 3 dogs, and a homozygous autophagy-related gene 4D (ATG4D) missense variant in Dogs 1 and 2. CONCLUSIONS AND CLINICAL IMPORTANCE: We describe a presumed hereditary and progressive polioencephalopathy in a family of Eurasier dogs. Further research is needed to establish the role of the MECR gene in dogs and the pathogenic effects of the detected variants.


Brain Diseases , Dog Diseases , Humans , Dogs , Animals , Brain Diseases/pathology , Brain Diseases/veterinary , Brain/pathology , Genotype , Mutation, Missense , Homozygote , Dog Diseases/genetics , Dog Diseases/pathology
18.
Brain Imaging Behav ; 18(1): 231-242, 2024 Feb.
Article En | MEDLINE | ID: mdl-38006574

PURPOSE: Primary open-angle glaucoma (POAG) is a widespread neurodegenerative condition affecting brain regions involved in visual processing, somatosensory processing, motor control, emotional regulation and cognitive functions. Cerebral hemodynamic dysfunction contributes to the pathogenesis of glaucomatous neurodegeneration. We aimed to investigate cerebral blood flow (CBF) redistributed patterns in visual and higher-order cognitive cortices and its relationship with clinical parameters in POAG, and we hypothesized that CBF changes together across regions within the same functional network. METHODS: Forty-five POAG patients and 23 normal controls underwent three-dimensional pseudocontinuous arterial spin labeling MRI to measure the resting-state CBF. Group comparisons of CBF and correlations between CBF changes and ophthalmological and neuropsychological indices were assessed. We determined CBF-based functional connectivity (CBFC) by calculating the correlations between specific regions and all other brain voxels and compared CBFC differences between groups. RESULTS: The patients exhibited decreased CBF in visual cortices, postcentral gyrus, inferior parietal lobule and cerebellum and increased CBF in medial, middle, and superior frontal gyri, as well as the insula. The reduced CBF in the visual cortices positively correlated with visual field defect (r = 0.498, p = 0.001) in POAG patients, while the increased CBF in the right medial frontal gyrus was negatively associated with the visual field defect (r = -0.438, p = 0.004) and positively associated with the cup-to-disc ratio (r = 0.469, p = 0.002). POAG patients showed negative connections weakening or converting to mild positive connections, as well as positive connections converting to negative connections. CONCLUSIONS: Regional and interregional CBF properties confirmed that the aberrant brain regions extend beyond the visual pathway, including the somatosensory, emotional and cognitive networks, which highlights the importance of cerebral hemodynamic dysfunction in the pathophysiology of spreading neurodegeneration in POAG.


Brain Diseases , Glaucoma, Open-Angle , Humans , Magnetic Resonance Imaging/methods , Glaucoma, Open-Angle/diagnostic imaging , Spin Labels , Brain , Brain Diseases/pathology , Cerebrovascular Circulation/physiology
20.
Neurol Neurochir Pol ; 58(1): 94-105, 2024.
Article En | MEDLINE | ID: mdl-38156729

INTRODUCTION: Primary familial brain calcification (PFBC) is a neurodegenerative disease characterised by bilateral calcification in the brain, especially in the basal ganglia, leading to neurological and neuropsychiatric manifestations. White matter hyperintensities (WMH) have been described in patients with PFBC and pathogenic variants in the gene for platelet-derived growth factor beta polypeptide (PDGFB), suggesting a manifest cerebrovascular process. We present below the cases of two PFBC families with PDGFB variants and stroke or transient ischaemic attack (TIA) episodes. We examine the possible correlation between PFBC and vascular events as stroke/TIA, and evaluate whether signs for vascular disease in this condition are systemic or limited to the cerebral vessels. MATERIAL AND METHODS: Two Swedish families with novel truncating PDGFB variants, p.Gln140* and p.Arg191*, are described clinically and radiologically. Subcutaneous capillary vessels in affected and unaffected family members were examined by light and electron microscopy. RESULTS: All mutation carriers showed WMH and bilateral brain calcifications. The clinical presentations differed, with movement disorder symptoms dominating in family A, and psychiatric symptoms in family B. However, affected members of both families had stroke, TIA, and/or asymptomatic intracerebral ischaemic lesions. Only one of the patients had classical vascular risk factors. Skin microvasculature was normal. CONCLUSIONS: Patients with these PDGFB variants develop microvascular changes in the brain, but not the skin. PDGFB-related small vessel disease can manifest radiologically as cerebral haemorrhage or ischaemia, and may explain TIA or stroke in patients without other vascular risk factors.


Brain Diseases , Calcinosis , Ischemic Attack, Transient , Neurodegenerative Diseases , Stroke , Humans , Proto-Oncogene Proteins c-sis/genetics , Proto-Oncogene Proteins c-sis/metabolism , Brain Diseases/genetics , Brain Diseases/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Ischemic Attack, Transient/diagnostic imaging , Ischemic Attack, Transient/genetics , Brain/diagnostic imaging , Brain/pathology , Calcinosis/diagnostic imaging , Calcinosis/genetics , Stroke/diagnostic imaging , Stroke/genetics , Stroke/pathology , Mutation
...